Ver código fonte

perf(multiprocessing and multithreading): Skeleton now works completely.

1. skeleton now works completely from taking video to putting together a file.
2. outputframe uses mp.Queue for taking frames from.
3. Still cannot display frames as they are being received in outputframeThread owing to a bug related to PyQt5.
refactoring
Atmadeep Arya 3 anos atrás
pai
commit
d92c05c159
5 arquivos alterados com 127 adições e 132 exclusões
  1. +0
    -1
      config/config.py
  2. +70
    -33
      skeleton.py
  3. +3
    -4
      src/objectDetection.py
  4. +1
    -1
      src/ocrNumberPlate.py
  5. +53
    -93
      src/trafficApp.py

+ 0
- 1
config/config.py Ver arquivo

@@ -11,7 +11,6 @@ class PARAMS(object):
_YOLOV3_OD_INPUT_IMAGE_SIZE = (416,416) #(Width, Height)
#_YOLOV3_OD_NUMBER_PLATE_OBJECT_LIST = ['car','bus','truck','motorbike']
_YOLOV3_OD_NUMBER_PLATE_OBJECT_LIST = ['car']
_OBJECT_DETECTION_PROCESS_CORES = 2

# Number Plate Detection
_YOLOV3_NP_WEIGHT = os.path.join(_CMD_PMT_,'resources/trainedModels/yolov3_number_plate_detection/lapi.weights')


+ 70
- 33
skeleton.py Ver arquivo

@@ -1,91 +1,116 @@

import argparse
import multiprocessing as mp
import os
import random
import threading as th
import time
from datetime import datetime
from queue import Queue
import numpy as np

os.environ['DISPLAY'] = ':0'

import cv2

inputQueue = mp.Queue()
vehicleDetectionQueue = mp.Queue()
outputQueue = mp.Queue()
IMAGE_HEIGHT = mp.Value('i',0)
IMAGE_WIDTH = mp.Value('i',0)

class ReadFrame(th.Thread):
global inputQueue
global IMAGE_HEIGHT,IMAGE_WIDTH
def __init__(self,source,name='Input thread',custom_id=1) -> None:
super().__init__()
self.frameId = 1
self.stopped = False
self.grabbed = True
self.name = f'{name} {custom_id}'

self.videoCaptureObject = cv2.VideoCapture(source)
if(self.videoCaptureObject.isOpened()):
IMAGE_HEIGHT.value = int(self.videoCaptureObject.get(cv2.CAP_PROP_FRAME_HEIGHT))
IMAGE_WIDTH.value = int(self.videoCaptureObject.get(cv2.CAP_PROP_FRAME_WIDTH))
print(f'Reading from source = {source}')

global inputQueue
def run(self):
while (self.grabbed):
(self.grabbed, self.frame) = self.videoCaptureObject.read()
IMAGE_HEIGHT.value = int(self.videoCaptureObject.get(cv2.CAP_PROP_FRAME_HEIGHT))
IMAGE_WIDTH.value = int(self.videoCaptureObject.get(cv2.CAP_PROP_FRAME_WIDTH))
inputQueue.put((self.frame,self.frameId))
print(f"{self.name}frame added with id {self.frameId}\n")
print(f"{self.name} frame added with id {self.frameId}\n")
self.frameId+=1
print('--Done reading frames--\n')
self.videoCaptureObject.release()
return

class VehicleDetection(mp.Process):
global inputQueue
global vehicleDetectionQueue
def __init__(self,name='Vehicle Detection Process',custom_id=1):
super(VehicleDetection,self).__init__()
self.name = f'{name} {custom_id}'
global inputQueue
def run(self):
while (True):
if(inputQueue.qsize() == 0):
vehicleDetectionQueue.put(None)
print(f'{self.name} exiting !! \n')
return
(frame,frameId) = inputQueue.get()
#inputQueue.task_done()
print(f"{self.name}Got frame with ID {frameId} qsize = {inputQueue.qsize()}\n")
print(f"{self.name} Got frame with ID {frameId} qsize = {inputQueue.qsize()}\n")
#do some processing here.
time.sleep(.5)
vehicleDetectionQueue.put_nowait((frame,frameId))
vehicleDetectionQueue.put((frame,frameId))

class NumberPlateOcr(mp.Process):
global vehicleDetectionQueue
global outputQueue
def __init__(self,name='Number plate OCR Process',custom_id=1):
super(NumberPlateOcr,self).__init__()
self.name=f'{name} {custom_id}'

global inputQueue
global vehicleDetectionQueue
global outputQueue

def run(self):
while True:
(frame,frameId) = vehicleDetectionQueue.get()
#inputQueue.task_done()
value = vehicleDetectionQueue.get()
if(value == None):
print(f'{self.name} exiting !! \n')
outputQueue.put(None)
return
(frame,frameId) = value
print(f"{self.name} Got frame with ID {frameId}\n")
#do some processing here.
time.sleep(.25)
outputQueue.put_nowait((frame,frameId))
if((inputQueue.empty()) and (vehicleDetectionQueue.empty())):
return


class outputframe(th.Thread):
def __init__(self,name='output thread',custom_id=1):
outputQueue.put((frame,frameId))
class OutputFrame(th.Thread):
global IMAGE_HEIGHT,IMAGE_WIDTH
global outputQueue
def __init__(self,name='output thread',custom_id=1,outputfilename="output.avi"):
super().__init__()
self.name = f'{name} {custom_id}'
self.outputfilename = outputfilename
print(f'frame size {IMAGE_HEIGHT.value} {IMAGE_WIDTH.value}')
self.videoWriterObject = cv2.VideoWriter(outputfilename,cv2.VideoWriter_fourcc(*'MJPG'),30,(IMAGE_WIDTH.value,IMAGE_HEIGHT.value))
self.winName = "DISPLAY"

def run(self):
cv2.namedWindow(self.winName,cv2.WINDOW_NORMAL)
while True:
(frame,frameId) = outputQueue.get()
print(f'{self.name} got frame {frameId}\n')



try:
value = outputQueue.get()
if(value == None):
return
(frame,frameId) = value
print(f'{self.name} got frame with ID {frameId} shape = {frame.shape}')
cv2.imshow(self.winName,frame)
self.videoWriterObject.write(frame)
except(AttributeError):
continue

if __name__ == '__main__':
import cProfile

@@ -97,16 +122,25 @@ if __name__ == '__main__':
parser.add_argument('--realtime',help='Camera Connected Input')
args = parser.parse_args()
#Name of the video file.
outputvideo = f'output {os.path.basename(args.video)[:-4]} {datetime.now()}.avi'
print(f'-----> Writing to file {outputvideo} <-------\n')
#enable profiler here.
app_profiler.enable()

readFramesThread = ReadFrame(args.video)
vehicleDetectionProcess = VehicleDetection()
numberPlateOcrProcess = NumberPlateOcr()
outputframeThread = OutputFrame(outputfilename = outputvideo)
readFramesThread.start()
time.sleep(.25)
vehicleDetectionProcess.start()
numberPlateOcrProcess.start()
outputframeThread.start()

print(f'{vehicleDetectionProcess.name} {vehicleDetectionProcess.pid} \n')
print(f'{numberPlateOcrProcess.name} {numberPlateOcrProcess.pid} \n')
readFramesThread.join()
print(f'readframesthread {readFramesThread.is_alive()}\n')
@@ -114,11 +148,14 @@ if __name__ == '__main__':
print(f'vehicleDetectionProcess {vehicleDetectionProcess.is_alive()}\n')
numberPlateOcrProcess.join()
print(f'numberPlateOcrProcess {numberPlateOcrProcess.is_alive()}\n')

outputframeThread.join()
print(f'{outputframeThread.name} {outputframeThread.is_alive()}')

#disable profiler here.
app_profiler.disable()
profile_name = str('temp.prof'.format(os.path.basename(args.video)[0:-4]))
profile_name = str('{}.prof'.format(os.path.basename(args.video)[0:-4]))
print("------------------------\nEnd of execution, dumping profile stats\n-------------------------")
app_profiler.dump_stats(profile_name)

+ 3
- 4
src/objectDetection.py Ver arquivo

@@ -115,7 +115,7 @@ class ObjectDetection(object):

return boxes, confidences, classids

def run_object_detection(self,img,frameId,imageH,imageW,vehicleDetectionQueue,doPlotBoxNLabel = True):
def run_object_detection(self,img,imageH,imageW,doPlotBoxNLabel = True):
status = True
# Image preprocess - make RGB,Resize,Scale by 1/255
blob = cv.dnn.blobFromImage(img, 1 / 255.0, PARAMS._YOLOV3_OD_INPUT_IMAGE_SIZE,
@@ -149,6 +149,5 @@ class ObjectDetection(object):
if doPlotBoxNLabel:
# Draw labels and boxes on the image
img = self.draw_labels_and_boxes(img, boxes, confidences, classids, idxs, self.colors, self.labels)
return img, frameId, boxes, confidences, classids, idxs, status

return img, boxes, confidences, classids, idxs,status

+ 1
- 1
src/ocrNumberPlate.py Ver arquivo

@@ -160,7 +160,7 @@ def extract_all_number_plates_text(img, region_of_interests):
# ============================================================================


def get_number_plate_ocr_from_rois(img, np_rois_info,save_number_plate):
def get_number_plate_ocr_from_rois(img, np_rois_info, save_number_plate):
np_roi_text_dict= {}
for idx,roiinfo in enumerate(np_rois_info):
conf, classID, roi = roiinfo


+ 53
- 93
src/trafficApp.py Ver arquivo

@@ -1,16 +1,11 @@
import argparse

import cv2 as cv

import numpy as np
from tqdm import tqdm
import os
import signal
import multiprocessing as mp
os.environ['DISPLAY'] = ':0'



from config.config import PARAMS
from src.numberPlateRoiDetection import NumberPlateROIDetection
from src.objectDetection import ObjectDetection
@@ -18,9 +13,6 @@ from src.ocrNumberPlate import get_number_plate_ocr_from_rois
from src.parkingDetection import ParkingDetection
from src.trackingManager import TrackerManager

# TODO 2 processes for objectdetection using queues (queue1)
# TODO implement queue for taking frames, frameid from queue1

class TrafficApp(object):
def __init__(self,args):
self.args = args
@@ -36,16 +28,9 @@ class TrafficApp(object):
if self.args.video is not None:
self.vid_writer = None
self.runVideoFlow()
def runVideoFlow(self):
frame_count = 0
frame1_id=0
frame2_id= 1
vehicleDetectionQueue = mp.Queue()
framesList=[]
outputfile = "output-{}.mp4".format(os.path.basename(args.video)[:-4])
if args.video is not None:
try:
videoObj = cv.VideoCapture(args.video)
@@ -82,85 +67,62 @@ class TrafficApp(object):
print('Frames-{},Height-{}, Width-{}'.format(totalFrames,imgH,imgW))

if self.args.saveoutput and (imgH > 0 and imgW > 0):
self.vid_writer = cv.VideoWriter(outputfile,
self.vid_writer = cv.VideoWriter(self.outputfile,
cv.VideoWriter_fourcc(*"MJPG"), 30,
(round(imgW),round(imgH)))
progress_bar=tqdm(total = totalFrames)
# start reading frame
while True :
grabbed1, frame1 = videoObj.read()
grabbed2, frame2 = videoObj.read()
frame1_id+=1
frame2_id+=2


while True:
grabbed, frame = videoObj.read()
#frame[:,450:,:] = 0
# end of frame
if not grabbed1:
if not grabbed:
break
frame_count +=1

#print('Frame_count-',frame_count)
#Use jump argument to skip frames.
# get object detection on this frame
objectDetectionProcess1=mp.Process(name='Object Detection Process 1',target=self.objectDetection.run_object_detection, args=(frame1.copy(),frame1_id,imgH,imgW,vehicleDetectionQueue))
objectDetectionProcess2=mp.Process(name='Object Detection Process 2',target=self.objectDetection.run_object_detection, args=(frame2.copy(),frame2_id,imgH,imgW,vehicleDetectionQueue))
objectDetectionProcess1.start()
objectDetectionProcess2.start()

print(f'{objectDetectionProcess1.name},{objectDetectionProcess1.pid},\n' )
print(f'{objectDetectionProcess2.name},{objectDetectionProcess2.pid} \n' )

#print(f'Vehicle detection Queue size = {vehicleDetectionQueue.qsize()}')
#img_objectMarking, boxes, confidences, classids, idxs,status = self.objectDetection.run_object_detection(frame.copy(),imageH=imgH,imageW=imgW)
img, frameId, boxes, confidences, classids, idxs,status = vehicleDetectionQueue.get()
#append the frames and frameid.
framesList.append((img,frameId))
print(f'frames stored = {len(framesList)} \n')
'''Assign Trackers'''
object_detect_info = [boxes, confidences, classids, idxs, status]
bbox_labels_tracking = self.parseObjDetectInfo(object_detect_info)
TrackerManager.FrameCount = frame_count
TrackerManager.manageTracker(bbox_labels_tracking)

''' Get Parking Status'''
if PARAMS._ALGO_MODE_PARKING:
self.parkingDetection.getParkingStatus(TrackerManager.TrackerList)

'''Filter ROIs for Number Plate Detection'''
tentative_numberplate_rios = self.objectDetection.filterRoiforNumberPlate(boxes, classids, idxs)


''' Get Number Plate ROI'''
detected_np_info = self.numberPlateDetection.run_number_plate_detection_rois(image=img,rois=tentative_numberplate_rios)


''' Get Number plate OCR '''
number_plate_ocr_dict = get_number_plate_ocr_from_rois(img,detected_np_info, False)

objectDetectionProcess1.join()
objectDetectionProcess2.join()

#Display frame
displayFrame = self.displayFrame(img,detected_np_info,number_plate_ocr_dict,object_detect_info)
# ISSUE how to kil the processes? New processes spawn on every iteration.
print(f'objectDetectionProcess1 is alive = {objectDetectionProcess1.is_alive()}\n')
print(f'objectDetectionProcess2 is alive = {objectDetectionProcess2.is_alive()}\n')
print("+++++++++++++++++++end of cycle++++++++++++++++++")

#winName = 'YOLOV3 Object Detection'
#cv.namedWindow(winName, cv.WINDOW_NORMAL)
#cv.imshow(winName, displayFrame)
#cv.resizeWindow('objectDetection',680,420)
if self.vid_writer:
self.vid_writer.write(displayFrame.astype(np.uint8))
c = cv.waitKey(1)
if c & 0xFF == ord('q'):
self.vid_writer.release()
videoObj.release()
break
if (frame_count % self.args.jump == 0):
# get object detection on this frame
img_objectMarking, boxes, confidences, classids, idxs,status = self.objectDetection.run_object_detection(frame.copy(),imageH=imgH,imageW=imgW)
'''Assign Trcakers'''
object_detect_info = [boxes, confidences, classids, idxs, status]
bbox_labels_tracking = self.parseObjDetectInfo(object_detect_info)
TrackerManager.FrameCount = frame_count
TrackerManager.manageTracker(bbox_labels_tracking)

''' Get Parking Status'''
if PARAMS._ALGO_MODE_PARKING:
self.parkingDetection.getParkingStatus(TrackerManager.TrackerList)

'''Filter ROIs for Number Plate Detection'''
tentative_numberplate_rios = self.objectDetection.filterRoiforNumberPlate(boxes, classids, idxs)


''' Get Number Plate ROI'''
detected_np_info = self.numberPlateDetection.run_number_plate_detection_rois(image=frame.copy(),rois=tentative_numberplate_rios)


''' Get Number plate OCR '''
number_plate_ocr_dict = get_number_plate_ocr_from_rois(frame.copy(),detected_np_info, False)

#Display frame
displayFrame = self.displayFrame(frame.copy(),detected_np_info,number_plate_ocr_dict,object_detect_info)

winName = 'YOLOV3 Object Detection'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cv.imshow(winName, displayFrame)
cv.resizeWindow('objectDetection',680,420)
if self.vid_writer:
self.vid_writer.write(displayFrame.astype(np.uint8))
c = cv.waitKey(1)
if c & 0xFF == ord('q'):
self.vid_writer.release()
videoObj.release()
break
progress_bar.close()
def parseObjDetectInfo(self,object_roi_info):
boxes, confidences, classids, idxs, status = object_roi_info
#[[list of bbox ][list of conf and labels]]
@@ -285,7 +247,7 @@ class TrafficApp(object):

if __name__ == '__main__':

import cProfile
import cProfile, pstats
app_profiler = cProfile.Profile()

parser = argparse.ArgumentParser(description='BitSilica Traffic Analysis Solution')
@@ -294,14 +256,12 @@ if __name__ == '__main__':
parser.add_argument('--realtime', help='Camera Connected Input')
parser.add_argument('--target', type=str,default = 'CPU',help='Target for CNN to run')
parser.add_argument('--saveoutput',type=bool,default=True, help='save video or not')
parser.add_argument('--debug',type=bool,default=False, help='print time taken by function')
parser.add_argument('--outputfile',type=str,default='./result.avi', help='save video path')
parser.add_argument('--debug',type=bool,default=False, help='print time taken by function')
parser.add_argument('--jump',type=int,default=1,help='integer value for jumping frames')
args = parser.parse_args()
#enable profiler here.
app_profiler.enable()

app = TrafficApp(args = args)

#disable profiler here.
app_profiler.disable()
profile_name = str('{}.prof'.format(os.path.basename(args.video)[0:-4]))
profile_name = str('profile_info-{}.prof'.format(args.jump))
app_profiler.dump_stats(profile_name)

Carregando…
Cancelar
Salvar