Browse Source

LUT Reduced

master
amit.b 3 years ago
commit
0f6d21ce70
1 changed files with 728 additions and 0 deletions
  1. +728
    -0
      sources_1/imports/Downloads/sc_decoder_fsm.sv

+ 728
- 0
sources_1/imports/Downloads/sc_decoder_fsm.sv View File

@@ -0,0 +1,728 @@
`timescale 1ns / 1ns
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 02/24/2021 08:03:07 PM
// Design Name:
// Module Name: sc_decoder_fsm
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`define BITS 8
module sc_decoder_fsm #(parameter BITS=8, N=11'd16)(
input clk, rst,
input in_valid,
input signed [N-1:0][BITS-1:0]y,
input [N-1:0]f,
output logic [N-1:0]u_cap,
output logic [N-1:0]v_final,
output logic out_valid
);


//function for fminsum calculation
function void fminsum_calc;
input signed [`BITS-1:0] a;
input signed [`BITS-1:0] b;
output signed [`BITS-1:0] c;
logic [`BITS-2:0] abs_a;
logic [`BITS-2:0] abs_b;
logic [`BITS-2:0] abs_c;

abs_a = (a[`BITS-1] == 1) ? ~a[`BITS-2:0] + 1 : a[`BITS-2:0];
abs_b = (b[`BITS-1] == 1) ? ~b[`BITS-2:0] + 1 : b[`BITS-2:0];
c[`BITS-1] = a[`BITS-1] ^ b[`BITS-1];
abs_c = (abs_b < abs_a) ? abs_b : abs_a;
c[`BITS-2:0] = (c[`BITS-1] == 1) ? ~abs_c + 1 : abs_c;
endfunction
//function for g-value calculation
function void g_calc;
input signed [`BITS-1:0] a;
input signed [`BITS-1:0] b;
input u;
output signed [`BITS:0] c;
c = (u == 0) ? (b + a) : (b + (~a+1));
endfunction

//parameters and signals declarations
localparam d=$clog2(N); //N=4, d=2(0 & 1)
localparam n=2*N-1; //(2**d)-1;
localparam cmax=0;
logic [N-1:0]u;
logic [d:0]temp_index_f,temp_index_g;
reg signed [BITS-1:0] LRU[2];
reg [N-1:0]v;
logic [N-1:0][BITS-1:0]L_in, L_out;
logic [N-1:0]v_in, v_out;
logic ena_v,enb_v,wea_v;
logic ena_L,enb_L,wea_L;
logic [1:0]counter,counter_reg;
logic [11:0]jL1,jL2,jR1,jR2,jR3,jU1,jU2;
logic [4:0] c_state, n_state;


wire [N-1:0]u_cap_1;
wire [N-1:0]v_final_1;
wire out_valid_1;

//Auxiliary registers declarations
logic [d:0] depth,depth_reg;
logic [d:0] node,node_reg;
logic [11:0]tmp_L,tmp_L_reg, tmp_R,tmp_R_reg,tmp_U, tmp_U_reg;

//FSM States
localparam idle=5'd0, root=5'd1, wait_L_logic=5'd2, wait_L=5'd3, state_L=5'd4, wait_R_logic=5'd5, wait_R=5'd6, state_R=5'd7;
localparam wait_U_logic=5'd8, wait_U=5'd9, state_U=5'd10,wait_LRU_logic=5'd11, wait_LRU=5'd12, state_LRU=5'd13;
localparam wait_lnode_logic=5'd14, wait_lnode=5'd15, state_lnode=5'd16,wait_lstate_logic=5'd17, wait_lstate=5'd18, state_last=5'd19;

//BlockRAM Instantiations
bram_v #(.ADDR_WIDTH(d-1),.DATA_WIDTH(N),.DEPTH(2**(d-1))) bram_v_i (
.clk(clk),.ena(ena_v),.enb(enb_v),
.addra(depth_reg-1'b1),
.addrb(depth_reg),
.wea(wea_v),
.dia(v_in),
.dob(v_out)
);

bram_L #(.ADDR_WIDTH(d-1),.DATA_WIDTH(N*BITS),.DEPTH(2**(d-1)),.N(N)) bram_L_i (
.clk(clk),.ena(ena_L),.enb(enb_L),
.addra(depth_reg),
.addrb(depth_reg-1'b1),
.wea(wea_L),
.dia(L_in),
.dob(L_out)
);

//output assignment
for(genvar i=0; i<N; i++)
begin
assign u_cap_1[i] = u[i];
end
assign v_final_1 = v;
assign out_valid_1 = (n_state == state_lnode) ? 1'b1 : 1'b0;
//assign out_valid=(n_state==state_last)?1'b1:1'b0;


// Sequential Logic - FSM State and Data Registers
always_ff@(posedge clk)
begin
if(rst==1)
begin
u_cap <= 'b0;
v_final <= 'b0;
out_valid <= 'b0;
c_state <= idle;
depth_reg<=0;
node_reg<=0;
counter_reg<=0;
tmp_L_reg<=0;
tmp_R_reg<=0;
tmp_U_reg<=0;
end
else
begin
out_valid <= out_valid_1;
v_final <= v_final_1;
if(out_valid)
begin
u_cap <= u;
end
else
begin
u_cap <= u_cap;
end
c_state <= n_state;
depth_reg<=depth;
node_reg<=node;
counter_reg<=counter;
tmp_L_reg<=tmp_L;
tmp_R_reg<=tmp_R;
tmp_U_reg<=tmp_U;
end
end

//Combinational Logic - FSM Next State Logic
always_comb
begin
// depth=0; node=0;
// ena_L=0;wea_L=0;enb_L=0;
tmp_L=0; tmp_R=0; tmp_U=0;
counter=0; ena_v=0;wea_v=0; enb_v=0; n_state = 0;
if(in_valid==1)
case(c_state)
idle: begin
depth=0; node=0; counter=0; tmp_L=0; tmp_R=0; tmp_U=0;
ena_L=0;wea_L=0;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
if(out_valid==1)
n_state=idle;
else
n_state=root;
end
root: begin
depth=depth_reg;node=node_reg;
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
for(int k=0; k<N; k++)
L_in[k]=y[k];
n_state=wait_L_logic;
end
wait_L_logic:
begin
depth=depth_reg+1; node=((2*node_reg)+1); tmp_L=0;
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
n_state=wait_L;
end
wait_L: begin
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_L;
end
else
counter=counter_reg+1;
end
state_L: begin
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
tmp_L=tmp_L_reg+1;
temp_index_f=((N/(2**(depth+1)))*((2*(node)+1)-((2**(depth+1))-1)));
jL1=(tmp_L_reg)+temp_index_f;
jL2=(tmp_L_reg)+temp_index_f+(N/(2**depth));
fminsum_calc(L_out[jL1],L_out[jL2],L_in[jL1]);
if(tmp_L< (N/(2**depth)))
n_state=state_L;
else if(depth<d)
n_state=wait_L_logic;
else
n_state=wait_LRU_logic;
end

wait_R_logic: begin
depth=depth_reg-1; node=node_reg+1; tmp_R=0;
n_state=wait_R;
end
wait_R: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=1;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_R;
end
else
counter=counter_reg+1;
end
state_R: begin
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
tmp_R=tmp_R_reg+1;
temp_index_f=((N/(2**(depth+1)))*((2*(node)+1)-((2**(depth+1))-1)));
// temp_index_f=((N>>(2**(depth+1)))*((2*(node)+1)-((2**(depth+1))-1)));
temp_index_g=((N/(2**(depth+1)))*((2*(node-1)+1)-((2**(depth+1))-1)));
// temp_index_g=((N>>(2**(depth+1)))*((2*(node-1)+1)-((2**(depth+1))-1)));
jR1=(tmp_R_reg)+temp_index_g;
jR2=(tmp_R_reg)+temp_index_g+(N/(2**depth));
// jR3=(tmp_R_reg)+temp_index_f;
g_calc(L_out[jR1],L_out[jR2],v_out[jR1],L_in[jR3]);
if(tmp_R< (N/(2**depth)))
// if(tmp_R< (N>>(2**depth)))
n_state=state_R;
else if(node==((2**d)-2))
n_state=wait_lnode_logic;
else if(depth==d)
n_state=wait_LRU_logic;
else
n_state = wait_L_logic;
end
wait_U_logic: begin
depth=depth_reg-1; node=(node_reg-2)/2; tmp_U=0;
// depth=depth_reg-1; node=(node_reg-2)>>1; tmp_U=0;
n_state=wait_U;
end
wait_U: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=0;wea_v=0; enb_v=1;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_U;
end
else
counter=counter_reg+1;
end
state_U: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
tmp_U=tmp_U_reg+1;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
// temp_index_f=((N/(2**(depth)))*(((node+1)<< 1)-((2**(depth))-1)));
jU1=(tmp_U_reg)+temp_index_f;
jU2=(tmp_U_reg)+temp_index_f+(N/(2**(depth)));
v_in[jU1] = v_out[jU1] ^ v_out[jU2];
v_in[jU2] = v_out[jU2];
if(tmp_U<(N/(2**(depth))))
n_state=state_U;
// else if(depth>0 && node%2==0)
else if(depth>0 && node[0]==0)
n_state = wait_U_logic;
else if(depth>0 && node!=0)
n_state=wait_R_logic;
else
n_state=wait_lstate_logic;
end
wait_LRU_logic: begin
// depth=depth_reg; node=(node_reg-1)/2;
depth=depth_reg; node=(node_reg-1)>>1;
n_state=wait_LRU;
end
wait_LRU: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_LRU;
end
else
counter=counter_reg+1;
end
state_LRU: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
fminsum_calc(L_out[temp_index_f],L_out[temp_index_f+1],LRU[0]);
// u[(2*node)+2-N]=(f[(2*node)+2-N]==1) ? 0 : ((LRU[0][BITS-1] == 1) ? 1 : 0);
u[(2*node)+2-N]=(f[(2*node)+2-N]) ? 0 : ((LRU[0][BITS-1]) ? 1 : 0);
g_calc(L_out[temp_index_f],L_out[temp_index_f+1],u[(2*node)+2-N],LRU[1]);
// u[(2*node)+3-N]=(f[(2*node)+3-N]==1) ? 0 : ((LRU[1][BITS-1] == 1) ? 1 : 0);
u[(2*node)+3-N]=(f[(2*node)+3-N]) ? 0 : ((LRU[1][BITS-1]) ? 1 : 0);
v_in[temp_index_f]=u[(2*node)+2-N] ^ u[(2*node)+3-N];
v_in[temp_index_f+1]=u[(2*node)+3-N];
// if(node%2==1)
if(node[0])
n_state = wait_R_logic;
else
n_state=wait_U_logic;
end
wait_lnode_logic: begin
depth=depth_reg+1; node=node_reg;
n_state=wait_lnode;
end
wait_lnode: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_lnode;
end
else
counter=counter_reg+1;
end
state_lnode: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
fminsum_calc(L_out[temp_index_f],L_out[temp_index_f+1],LRU[0]);
// u[(2*node)+2-N]=(f[(2*node)+2-N]==1) ? 0 : ((LRU[0][BITS-1] == 1) ? 1 : 0);
u[(2*node)+2-N]=(f[(2*node)+2-N]) ? 0 : ((LRU[0][BITS-1]) ? 1 : 0);
g_calc(L_out[temp_index_f],L_out[temp_index_f+1],u[(2*node)+2-N],LRU[1]);
// u[(2*node)+3-N]=(f[(2*node)+3-N]==1) ? 0 : ((LRU[1][BITS-1] == 1) ? 1 : 0);
u[(2*node)+3-N]=(f[(2*node)+3-N]) ? 0 : ((LRU[1][BITS-1]) ? 1 : 0);
v_in[temp_index_f]=u[(2*node)+2-N] ^ u[(2*node)+3-N];
v_in[temp_index_f+1]=u[(2*node)+3-N];
n_state = wait_U_logic;
end
wait_lstate_logic: begin
depth=depth_reg; node=node_reg;
n_state=wait_lstate;
end
wait_lstate: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_last;
end
else
counter=counter_reg+1;
end
state_last: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
v=v_out;
n_state=idle;
end
endcase
else n_state = idle;
end
endmodule

/*

`timescale 1ns / 1ns
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 02/24/2021 08:03:07 PM
// Design Name:
// Module Name: sc_decoder_fsm
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
`define BITS 8
module sc_decoder_fsm #(parameter BITS=8, N=11'd16)(
input clk, rst,
input in_valid,
input signed [N-1:0][BITS-1:0] y,
input [N-1:0]f,
output wire [N-1:0]u_cap,
output wire [N-1:0]v_final,
output wire out_valid
);


//function for fminsum calculation
function void fminsum_calc;
input signed [`BITS-1:0] a;
input signed [`BITS-1:0] b;
output signed [`BITS-1:0] c;
logic [`BITS-2:0] abs_a;
logic [`BITS-2:0] abs_b;
logic [`BITS-2:0] abs_c;

abs_a = (a[`BITS-1] == 1) ? ~a[`BITS-2:0] + 1 : a[`BITS-2:0];
abs_b = (b[`BITS-1] == 1) ? ~b[`BITS-2:0] + 1 : b[`BITS-2:0];
c[`BITS-1] = a[`BITS-1] ^ b[`BITS-1];
abs_c = (abs_b < abs_a) ? abs_b : abs_a;
c[`BITS-2:0] = (c[`BITS-1] == 1) ? ~abs_c + 1 : abs_c;
endfunction
//function for g-value calculation
function void g_calc;
input signed [`BITS-1:0] a;
input signed [`BITS-1:0] b;
input u;
output signed [`BITS:0] c;
c = (u == 0) ? (b + a) : (b + (~a+1));
endfunction

//parameters and signals declarations
localparam d=$clog2(N); //N=4, d=2(0 & 1)
localparam n=2*N-1; //(2**d)-1;
localparam cmax=0;
logic u[N];
logic [d:0]temp_index_f,temp_index_g;
reg signed [BITS-1:0] LRU[2];
reg [N-1:0]v;
logic [N-1:0][BITS-1:0]L_in, L_out;
logic [N-1:0]v_in, v_out;
logic ena_v,enb_v,wea_v;
logic ena_L,enb_L,wea_L;
logic [1:0]counter,counter_reg;
logic [11:0]jL1,jL2,jR1,jR2,jR3,jU1,jU2;
logic [4:0] c_state, n_state;

//Auxiliary registers declarations
logic [d:0] depth,depth_reg;
logic [d:0] node,node_reg;
logic [11:0]tmp_L,tmp_L_reg, tmp_R,tmp_R_reg,tmp_U, tmp_U_reg;

//FSM States
localparam idle=5'd0, root=5'd1, wait_L_logic=5'd2, wait_L=5'd3, state_L=5'd4, wait_R_logic=5'd5, wait_R=5'd6, state_R=5'd7;
localparam wait_U_logic=5'd8, wait_U=5'd9, state_U=5'd10,wait_LRU_logic=5'd11, wait_LRU=5'd12, state_LRU=5'd13;
localparam wait_lnode_logic=5'd14, wait_lnode=5'd15, state_lnode=5'd16,wait_lstate_logic=5'd17, wait_lstate=5'd18, state_last=5'd19;

//BlockRAM Instantiations
bram_v #(.ADDR_WIDTH(d-1),.DATA_WIDTH(N),.DEPTH(2**(d-1))) bram_v_i (
.clk(clk),.ena(ena_v),.enb(enb_v),
.addra(depth_reg-1),
.addrb(depth_reg),
.wea(wea_v),
.dia(v_in),
.dob(v_out)
);

bram_L #(.ADDR_WIDTH(d-1),.DATA_WIDTH(N*BITS),.DEPTH(2**(d-1)),.N(N)) bram_L_i (
.clk(clk),.ena(ena_L),.enb(enb_L),
.addra(depth_reg),
.addrb(depth_reg-1),
.wea(wea_L),
.dia(L_in),
.dob(L_out)
);

//output assignment
for(genvar i=0; i<N; i++)
begin
assign u_cap[i] = u[i];
end
assign v_final=v;
assign out_valid=(n_state==state_last)?1'b1:1'b0;

// Sequential Logic - FSM State and Data Registers
always_ff@(posedge clk)
begin
if(rst==1)
begin
c_state <= idle;
depth_reg<=0;
node_reg<=0;
counter_reg<=0;
tmp_L_reg<=0;
tmp_R_reg<=0;
tmp_U_reg<=0;
end
else
begin
c_state <= n_state;
depth_reg<=depth;
node_reg<=node;
counter_reg<=counter;
tmp_L_reg<=tmp_L;
tmp_R_reg<=tmp_R;
tmp_U_reg<=tmp_U;
end
end

//Combinational Logic - FSM Next State Logic
always_comb
begin
if(in_valid==1)
case(c_state)
idle: begin
depth=0; node=0; counter=0; tmp_L=0; tmp_R=0; tmp_U=0;
ena_L=0;wea_L=0;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
if(out_valid==1)
n_state=idle;
else
n_state=root;
end
root: begin
depth=depth_reg;node=node_reg;
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
for(int k=0; k<N; k++)
L_in[k]=y[k];
n_state=wait_L_logic;
end
wait_L_logic:
begin
depth=depth_reg+1; node=((2*node_reg)+1); tmp_L=0;
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
n_state=wait_L;
end
wait_L: begin
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_L;
end
else
counter=counter_reg+1;
end
state_L: begin
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
tmp_L=tmp_L_reg+1;
temp_index_f=((N/(2**(depth+1)))*((2*(node)+1)-((2**(depth+1))-1)));
jL1=(tmp_L_reg)+temp_index_f;
jL2=(tmp_L_reg)+temp_index_f+(N/(2**depth));
fminsum_calc(L_out[jL1],L_out[jL2],L_in[jL1]);
if(tmp_L< (N/(2**depth)))
n_state=state_L;
else if(depth<d)
n_state=wait_L_logic;
else
n_state=wait_LRU_logic;
end

wait_R_logic: begin
depth=depth_reg-1; node=node_reg+1; tmp_R=0;
n_state=wait_R;
end
wait_R: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=1;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_R;
end
else
counter=counter_reg+1;
end
state_R: begin
ena_L=1;wea_L=1;enb_L=0;
ena_v=0;wea_v=0; enb_v=0;
tmp_R=tmp_R_reg+1;
temp_index_f=((N/(2**(depth+1)))*((2*(node)+1)-((2**(depth+1))-1)));
temp_index_g=((N/(2**(depth+1)))*((2*(node-1)+1)-((2**(depth+1))-1)));
jR1=(tmp_R_reg)+temp_index_g;
jR2=(tmp_R_reg)+temp_index_g+(N/(2**depth));
jR3=(tmp_R_reg)+temp_index_f;
g_calc(L_out[jR1],L_out[jR2],v_out[jR1],L_in[jR3]);
if(tmp_R< (N/(2**depth)))
n_state=state_R;
else if(node==((2**d)-2))
n_state=wait_lnode_logic;
else if(depth==d)
n_state=wait_LRU_logic;
else
n_state = wait_L_logic;
end
wait_U_logic: begin
depth=depth_reg-1; node=(node_reg-2)/2; tmp_U=0;
n_state=wait_U;
end
wait_U: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=0;wea_v=0; enb_v=1;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_U;
end
else
counter=counter_reg+1;
end
state_U: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
tmp_U=tmp_U_reg+1;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
jU1=(tmp_U_reg)+temp_index_f;
jU2=(tmp_U_reg)+temp_index_f+(N/(2**(depth)));
v_in[jU1] = v_out[jU1] ^ v_out[jU2];
v_in[jU2] = v_out[jU2];
if(tmp_U<(N/(2**(depth))))
n_state=state_U;
else if(depth>0 && node%2==0)
n_state = wait_U_logic;
else if(depth>0 && node!=0)
n_state=wait_R_logic;
else
n_state=wait_lstate_logic;
end
wait_LRU_logic: begin
depth=depth_reg; node=(node_reg-1)/2;
n_state=wait_LRU;
end
wait_LRU: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_LRU;
end
else
counter=counter_reg+1;
end
state_LRU: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
fminsum_calc(L_out[temp_index_f],L_out[temp_index_f+1],LRU[0]);
u[(2*node)+2-N]=(f[(2*node)+2-N]==1) ? 0 : ((LRU[0][BITS-1] == 1) ? 1 : 0);
g_calc(L_out[temp_index_f],L_out[temp_index_f+1],u[(2*node)+2-N],LRU[1]);
u[(2*node)+3-N]=(f[(2*node)+3-N]==1) ? 0 : ((LRU[1][BITS-1] == 1) ? 1 : 0);
v_in[temp_index_f]=u[(2*node)+2-N] ^ u[(2*node)+3-N];
v_in[temp_index_f+1]=u[(2*node)+3-N];
if(node%2==1)
n_state = wait_R_logic;
else
n_state=wait_U_logic;
end
wait_lnode_logic: begin
depth=depth_reg+1; node=node_reg;
n_state=wait_lnode;
end
wait_lnode: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_lnode;
end
else
counter=counter_reg+1;
end
state_lnode: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
temp_index_f=((N/(2**(depth)))*((2*node+1)-((2**(depth))-1)));
fminsum_calc(L_out[temp_index_f],L_out[temp_index_f+1],LRU[0]);
u[(2*node)+2-N]=(f[(2*node)+2-N]==1) ? 0 : ((LRU[0][BITS-1] == 1) ? 1 : 0);
g_calc(L_out[temp_index_f],L_out[temp_index_f+1],u[(2*node)+2-N],LRU[1]);
u[(2*node)+3-N]=(f[(2*node)+3-N]==1) ? 0 : ((LRU[1][BITS-1] == 1) ? 1 : 0);
v_in[temp_index_f]=u[(2*node)+2-N] ^ u[(2*node)+3-N];
v_in[temp_index_f+1]=u[(2*node)+3-N];
n_state = wait_U_logic;
end
wait_lstate_logic: begin
depth=depth_reg; node=node_reg;
n_state=wait_lstate;
end
wait_lstate: begin
ena_L=0;wea_L=0;enb_L=1;
ena_v=0;wea_v=0; enb_v=0;
if(counter==cmax) begin
counter=counter_reg-cmax;
n_state=state_last;
end
else
counter=counter_reg+1;
end
state_last: begin
ena_L=0;wea_L=0;enb_L=0;
ena_v=1;wea_v=1; enb_v=0;
v=v_out;
n_state=idle;
end
endcase
else n_state = idle;
end
endmodule
*/

Loading…
Cancel
Save